|
Searching for primordial black holes with the einstein telescope impact of design and systematics, Gabriele Franciolini,~ / 1. Introduction 2. Key prediction for PBH Mergers 3. ET Detector design and networks 4. Signal to noise ratio and Fisher matrixNotation and setup 5. Result 6. Population Analysis / 1. Introduction Primordial black holes (PBHs) ¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
6p age   | 
3,000 ¿ø
|
|
|
|
|
|
C¾ð¾î·Î ±¸ÇöÇÑ Binary Search Tree / 1. °úÁ¦ ¸ñÇ¥ 2. ¼³°è 3. °á°ú º¸°í 4. ÀڷᱸÁ¶ ¹× ¾Ë°í¸®Áò ºÐ¼® 5. Àüü ÄÚµå / 1. °úÁ¦ ¸ñÇ¥ ÀÌ °úÁ¦ÀÇ ¸ñÇ¥´Â ÀÌÁø Ž»ö Æ®¸®(Binary Search Tree, BST)¸¦ C ¾ð¾î·Î ±¸ÇöÇÏ¿© Æ®¸® ÀÚ·á ±¸Á¶ÀÇ ¿ø¸®¸¦ ÀÌÇØÇÏ°í À̸¦ È°¿ëÇÑ ´Ù¾çÇÑ ¿¬»êÀ» ¼öÇàÇÏ´Â °ÍÀÌ´Ù. ÀÌÁø Ž»ö Æ®¸®´Â ³ëµå ±â¹ÝÀÇ ÀÚ·á ±¸Á¶·Î, °¢ ³ëµå´Â Å° °ªÀ» °¡Áö¸ç, ¿ÞÂÊ¡¦ |
|
|
|
|
|
Future Search(Ç»Ãļġ) ¿ä¾à ¹× ¹ßÇ¥ ÀÚ·á HRDÄÁ¼³Æà Á¶Á÷°³¹ß / 1. ÆÄÆ® 1 ÀÌÇØÇϱâ - Ç»Ãļġ°¡ ¹«¾ùÀÎÁö ¾Ë¾Æº¾½Ã´Ù 2. ÆÄÆ® 2 °èȹÇϱâ - Ç»Ãļġ ÁøÇà ÇÁ·Î¼¼½º¿¡ ´ëÇØ ÀÌÇØÇغ¾½Ã´Ù 3. ÆÄÆ® 3 ½ÇÇàÇϱâ - Ç»Ãļġ¸¦ Á÷Á¢ ½Ç½ÀÇغ¾½Ã´Ù / 1. ÆÄÆ® 1 ÀÌÇØÇϱâ - Ç»Ãļġ°¡ ¹«¾ùÀÎÁö ¾Ë¾Æº¾½Ã´Ù Ç»Ãļġ´Â Á¶Á÷ÀÇ °ü°èÀÚµéÀÌ ÇÑÀÚ¸®¿¡ ¸ð¿© ¹Ì·¡¸¦ °èȹÇÏ°í ½ÇÇà °¡´ÉÇÑ ¡¦ |
|
|
|
|
|
Search algorithm Á¤¸® / 1. Performance Measure¿¡ °üÇؼ 2. Uninformed search strategy 3. Informed search 4. Local search 5. Online Search Agent¿Í ¾Ë·ÁÁöÁö ¾ÊÀº environement¿¡¼ÀÇ search ¹æ¹ý 6. Adversarial Search 7. Learning Heuristic °ÈÇнÀ, MCTS 8. ¾ËÆÄ°í Á¦·Î ³í¹®¿¡¼ÀÇ MCTS 9. ÃÖÁ¾ ºñ±³/´ëÁ¶ / 1. Performance Measure¿¡ °üÇؼ °Ë»ö ¾Ë°í¸®ÁòÀÇ¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
8p age   | 
3,000 ¿ø
|
|
|
|
|
|
Áß¾Ó´ë ¼ºñ½º¸¶ÄÉÆà °³ÀΰúÁ¦1 Introduction to services- Search, Experiencem, ,Credence Qualities / 1. Where a car falls on the continuum of Evaluation 2. Attempts to overcome predominant qualities / 1. Where a car falls on the continuum of Evaluation Â÷·®ÀÇ Æò°¡¿¡ °üÇÑ ¿¬¼Óü¿¡¼ ÀÚµ¿Â÷´Â ÁÖ·Î °æÇèÀû Ç°Áú¿¡ À§Ä¡ÇÑ´Ù. °í°´ÀÌ ÀÚµ¿Â÷¸¦ ±¸¸ÅÇϰųª ÀÌ¿ëÇÒ ¶§¡¦ |
|
|
|
|
|
visual search / 1. Visual Search(½Ã°¢ Ž»ö) 2. Instructions 3. ½ÇÇè¹æ¹ý 4. ±âº» ¹è°æ ¹× ÀÌ·Ð 1) ¼¼ºÎ Ư¡ ÅëÇÕ ÀÌ·Ð 2) À¯»ç¼º ÀÌ·Ð 5. ½ÇÇè°á°ú 6. ½Ã»çÁ¡ ¹× ÀÀ¿ë / 1. Visual Search(½Ã°¢ Ž»ö) Visual search´Â ÁÖ¾îÁø ½Ã°¢Àû ȯ°æ¿¡¼ ƯÁ¤ °´Ã¼¸¦ ã¾Æ³»´Â °úÁ¤À» ÀǹÌÇÑ´Ù. ÀÌ °úÁ¤Àº ¿ì¸®°¡ Àϻ󿡼 ¼ö¸¹Àº ½Ã°¢Àû Á¤º¸ ¼Ó¿¡¼ ÇÊ¿äÇÑ Á¤º¸¸¦ ½Å¼ÓÇÏ°Ô ÃßÃ⡦ |
|
|
|
|
|
Ž»ö(Search)¿¡ ´ëÇÑ ÀÚ·áÀÔ´Ï´Ù. ÀڷᱸÁ¶Å½»öºÎºÐ¸®Æ÷ / 1. Á¤ÀÇ ÄÄÇ»ÅÍÀÇ ±â¾ï °ø°£ ³»¿¡ ±â¾ïµÈ ÀÚ·áµé Áß¿¡¼ ¾î¶°ÇÑ ¼ºÁúÀ» ¸¸Á·ÇÏ´Â ÀڷḦ ã´Â °ÍÀ» Ž»öÀ̶ó°í ÇÑ´Ù. 2. ÀüÁ¦Á¶°Ç ¨ç Ž»öÀÇ ´ë»óÀÎ ÀڷḦ ÀûÀýÇÑ ±¸Á¶·Î ±â¾ï °ø°£¿¡ Ç¥ÇöÇØ¾ß ÇÑ´Ù. ¨è Á¶°ÇÀ» ³ªÅ¸³»´Â ±âÈ£³ª ºÎÈ£°¡ ÀÖ¾î¾ß ÇÑ´Ù. 3. ÀÚ·áÀÇ Á¤ÀÇ ¿©·¯ °¡Áö ÀÇ¹Ì ÀÖ´Â °ªµéÀ» ¸»Çϸç, À̵éÀÇ ¸ðÀÓÀ» Àڷᡦ |
|
·¹Æ÷Æ® >
±âŸ  | 
8p age   | 
1,000 ¿ø
|
|
|
|
|
|
ÃÖÀûÀÌÁøŽ»öÆ®¸®(Optimal Binary Search Tree)¸¦ C·Î ±¸ÇöÇÑ ÇÁ·Î±×·¥ ÀÔ´Ï´Ù. n°³ÀÇ µ¥ÀÌÅÍ¿¡ ´ëÇÑ È®·üÀ» ÀÔ·Â¹Þ¾Æ ÃÖÀûÀÇ Æò±ÕŽ»ö½Ã°£À» °¡Áö´Â ÀÌÁøŽ»öÆ®¸®¸¦ ±¸ÇöÇÏ´Â ÇÁ·Î±×·¥ ÀÔ´Ï´Ù. n°³ÀÇ µ¥ÀÌÅÍÀÇ key°ª°ú È®·üÀ» ÀԷ¹ÞÀº ÈÄ Å×ÀÌÅÍÅ×ÀÌºí ¹× ¸ðµç °æ¿ì¿¡ ´ëÇÑ Æò±Õ°Ë»ö½Ã°£ ¹× ÃÖÀû Æ®¸®ÀÇ root, inOrderÀ» ÅëÇÑ Æ®¸®ÀÇ Å½»ö, °¢ ³ëµåÀÇ ·¹º§°ú ¹æÇâÀ» Ãâ·ÂÇØÁÝ´Ï´Ù. È®·ü¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
7p age   | 
1,500 ¿ø
|
|
|
|
|
|
2. °Ë»ö¹æ¹ý 1) ÁÖÁ¦¾î °Ë»ö ¨ç °Ë»ö¾î·Î ÀԷµǴ ´Ü¾î´Â ¶Ù¾î¾²±â ȤÀº ½°Ç¥(,)¸¦ ÅëÇØ ±¸ºÐ ¨è ÃÖ´ë 6°³ÀÇ ´Ü¾î±îÁö... / 2. °Ë»ö¹æ¹ý 1) ÁÖÁ¦¾î °Ë»ö ¨ç °Ë»ö¾î·Î ÀԷµǴ ´Ü¾î´Â ¶Ù¾î¾²±â ȤÀº ½°Ç¥(,)¸¦ ÅëÇØ ±¸ºÐ ¨è ÃÖ´ë 6°³ÀÇ ´Ü¾î±îÁö ÀÔ·ÂÇÏ¿© °Ë»ö ÇÒ ¼ö ÀÖ´Ù. ¨é °¢ ´Ü¾îµéÀº OR·Î ¿¬»êµÇ¾î ÇØ´ç ´Ü¾îµéÀÌ ¸ðµÎ Æ÷ÇÔµÈ ¹®¼¿¡¼ ½ÃÀÛÇÏ¿© ¸¶Áö¸· ÇÑ ´Ü¾î±îÁö ¡¦ |
|
·¹Æ÷Æ® >
±âŸ  | 
16p age   | 
2,000 ¿ø
|
|
|
|
|
|
ÀÌ º¸°í¼´Â `ºòÅÍ ÇÁ·©Å¬`Àú¼ú, ¡¸Á×À½ÀÇ ¼ö¿ë¼Ò¿¡¼¡¹¿¡ ´ëÇؼ ±³¾ç·¹Æ÷Æ®·Î µ¶ÈÄ°¨À» ¾²°Ô µÇ¾ú½À´Ï´Ù ÁٰŸ®¸¦ ÃÖ´ëÇÑ ÁÙÀÌ°í Á¦ »ý°¢ À§ÁÖ·Î ÀÛ¼ºÇÏ¿´½À´Ï´Ù. ÀÌ Ã¥À» ÀÐ°í µ¶ÈÄ°¨À» ¾²½Ã·Á´Â ºÐµé°ú ºü¸¥ ½Ã°£¾È¿¡ ÀÌ Ã¥¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ÀÌÇظ¦ ÇϽ÷Á´Â ºÐµé¿¡°Ô ¸¹Àº µµ¿òÀÌ µÇ¸®¶ó »ý°¢Çϸç, ´Ùµé ÁÁÀº ·¹Æ÷Æ® ¾²½Ã±æ ¹Ù¶ø´Ï´Ù! / ¾ó¸¶ Àü ´©±º°¡·ÎºÎÅÍ Àû±Ø Ãßõ ¹Þ¾Ò´ø [Á×À½¡¦ |
|
|
|
|