1. Bilinear Interpolation (½Ö¼±Çü º¸°£¹ý)
new_widthx = (i - 0. / scale_factor + 0. 5;y = (j - 0. / scale_factor + 0. ));Q21 = double(img(x2, y1, ));Q12 = double(img(x1, y2, ));Q22 = double(img(x2, y2, )); b1 = ((x2 - x) / (x2 - x) Q11 + ((x - x / (x2 - x) Q21;b2 = ((x2 - x) / (x2 - x) Q12 + ((x - x / (x2 - x) Q22; new_img(i, j, ) = ((y2 - y) / (y2 - y) b1 + ((y - y / (y2 - y) b2;endend % »õ À̹ÌÁö¸¦ ȸ鿡 Ç¥½Ãimshow(new_img);``` ÀÌ ¿¹Á¦´Â À̹ÌÁö¸¦ µÎ ¹è Å©±â·Î È®´ëÇÏ´Â Bilinear interpolation ¹æ¹ýÀ» ³ªÅ¸³½´Ù. ÀÌ °úÁ¤À» ÅëÇØ À̹ÌÁöÀÇ Çϵå¿þ¾îÀû Ư¼º°ú ½Ã°¢Àû Ç°ÁúÀ» À¯ÁöÇÏ¸é¼ ´Ù¾çÇÑ Çػ󵵸¦ Áö¿øÇÒ ¼ö ÀÖ´Â À¯¿ëÇÑ µµ±¸°¡ µÈ´Ù. Bilinear interpolationÀº ¾Ë°í¸®ÁòÀÇ °£´ÜÇÔ¿¡µµ ºÒ±¸ÇÏ°í, À̹ÌÁö ó¸® ºÐ¾ß¿¡¼ ³Î¸® »ç¿ëµÇ¸ç, ´Ù¾çÇÑ ÀÀ¿ë ÇÁ·Î±×·¥¿¡¼ Áß¿äÇÑ ¿ªÇÒÀ» ÇÑ´Ù.
1-1) Bilinear Interpolation À̶õ
Bilinear interpolationÀº 2Â÷¿ø °ø°£¿¡¼ À̹ÌÁö¸¦ È®´ëÇϰųª º¯È¯ÇÒ ¶§ »ç¿ëµÇ´Â º¸°£ ±â¹ýÀ¸·Î, ÁÖ¾îÁø ³× °³ÀÇ ÁÖº¯ Çȼ¿ °ªÀ» ÀÌ¿ëÇÏ¿© ¸ñÇ¥ À§Ä¡ÀÇ Çȼ¿ °ªÀ» ÃßÁ¤ÇÏ´Â ¹æ¹ýÀÌ´Ù. ÀÌ ¹æ¹ý¡¦(»ý·«)
|