¢¸
  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (1 ÆäÀÌÁö)
    1

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (2 ÆäÀÌÁö)
    2

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (3 ÆäÀÌÁö)
    3

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (4 ÆäÀÌÁö)
    4

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (5 ÆäÀÌÁö)
    5


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    5 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : ´õ Å©°Ôº¸±â
  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (1 ÆäÀÌÁö)
    1

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (2 ÆäÀÌÁö)
    2

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (3 ÆäÀÌÁö)
    3

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (4 ÆäÀÌÁö)
    4

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (5 ÆäÀÌÁö)
    5



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    5 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
µå·¡±× : Á¿ìÀ̵¿

Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx

½ÃÇèÁ·º¸ > Á·º¸³ëÆ® ÀÎ ¼â ¹Ù·Î°¡±âÀúÀå
Áñ°Üã±â
Å°º¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç
Ŭ¸³º¸µå¿¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
ÆÄÀÏ : Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   [Size : 344 Kbyte ]
ºÐ·®   5 Page
°¡°Ý  1,000 ¿ø

Ä«Ä«¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â


º»¹®/³»¿ë
2015 Classical Mechanics I Final-term Exam
2015. 6. 19 20:00 ~

1. (To be scored by Prof.)

2. (a) Show that the superposition principle does not hold for a nonlinear differential equation such as . Here is a constant. (4 points)

Let and are possible solutions of the differential equation. If we apply a trial superposition solution to the equation, then . Therefore, the superposition principle does not hold for such a nonlinear differential equation.
(b) Consider the system represented as
Here, is a small, positive constant. Show that the system has a simple limit cycle, and describe the motions of the variables with brief sketches. (6 points)
Change the variables as and . Then .
In similar, .
Let , then .
Finally, where ,
For large , in which , and . Thus this system has a simple limit cycle with and . Or and , and and . (4 points)
A brief sketch can be drawn as (¡¦(»ý·«)

3. Consider an isolated two-particle system consisting of and . Gravitational force is the only interaction between the particles. Solve this problem using Lagrange¡¯s or Hamilton¡¯s methods.

(a) Find the Lagrangian for the system. (2 points)

(b) Derive the equation of the motion for the position of the center-of-mass (CM), , and describe the motion. (3 points)

(c) Find the Lagrangian function and derive Lagrange equation for the system in the CM reference frame, which is defined by the condition, . (5 points)

4. (a) Consider a simple plane pendulum consisting of a mass attached to a string of length . After the pendulum is s



ÀÚ·áÁ¤º¸
ID : comm***
Regist : 2017-04-03
Update : 2020-10-20
FileNo : 17042292

Àå¹Ù±¸´Ï

¿¬°ü°Ë»ö(#)
Ä«À̽ºÆ®   °íÀü¿ªÇÐ   ±â¸»   Á·º¸   docx  


ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸Ãë±Þ¹æħ | °í°´¼¾ÅÍ ¤Ó olle@olleSoft.co.kr
¿Ã·¹¼ÒÇÁÆ® | »ç¾÷ÀÚ : 408-04-51642 ¤Ó ±¤ÁÖ±¤¿ª½Ã ±¤»ê±¸ ¹«Áø´ë·Î 326-6, 201È£ | äÈñÁØ | Åë½Å : ±¤»ê0561È£
Copyright¨Ï ¿Ã·¹¼ÒÇÁÆ® All rights reserved | Tel.070-8744-9518
°³ÀÎÁ¤º¸Ãë±Þ¹æħ ¤Ó °í°´¼¾ÅÍ ¤Ó olle@olleSoft.co.kr
¿Ã·¹¼ÒÇÁÆ® | »ç¾÷ÀÚ : 408-04-51642 | Tel.070-8744-9518