1. Bereiss, R., Porter, B., and Weir, C., PROTOS:An exemplar-based learning apprentice. Tech. Rep. AI87-53, Univ. of Texas at Austin, Austin, Texas, 1988 2. Bocionek, S. and Sassin, M. Dialog-based learning(DBL) for adaptive interface agents and programming-by-demonstration systems, Tech. Rep. CMU-CS-93-175, Carnegie Mellon Univ., Pittsburgh, Pa., 1993 3. Caruana, R. and Freitag, D., Greedy attribute selection. In Proceedings of the 11th International Joint Conference on Machine Learning, July 1994 4. Dent, L., Boticairo, J., McDermott, J., Mitchell, T. and Zabowski, D. A personal learning apprentice. In Proceedings of the International Joint Conference on Artificial Intelligence. 1992 5. Foltz, P.W. and Dumais, T. Personalized information delivery:An analysis of information filtering methods. Commun. ACM 35,12(1990) 51-60 6. Holte, R. and rummond, C. A learning apprentice. Tech. Rep. Univ. of Ottawa, 1994 7. Jourdan, J., Dent, L., McDermott, J., Mitchell, T., and Zabowski, D. Interfaces that learm:A learning apprenticefor calendat management. Tech. Rep. CMU-CS-91-135, Carnegie Mellon Univ., Pittsburgh, Pa., 1991 8. Kay, A. Computer software, Sci. Am. 251,3(1984) 53-59 9. Kodratoff, Y. and Teucci, G. DISCIPLE:An iterative approach to learning apprentice systens. Tech. Rep. UPS-293, Laboratoire de Recherche en Informatique, Universite de PARIS-SUD, Paris, France, 1986 10. Kozierok, R. and Maes, P. Intelligenr groupware for scheduling meetings. Submitted to CSCW-92, 1992 11. Mitchell, T.M., Mahadevan, S. and Steinberg, L. LEAP:A learning apprenticefor ÇÇ³Ä design, In Proceedings of the 9th International Joint Conference on Artificial Intelligence, 1985 12. Nakauchi, Y., Okada, T., and Anzai, Y. Groupware that learns. In Proceedings of the IEEE Pacific Rim Communications, Computers and Signal Processing Conference, IEEE, New York, 1991 13. Negroponte, N. The Architecture Machine:Towards a More Human Environment. MIT Press, Cambridge, Mass., 1970 14. Quinlan, J.R. Generating production rules from decision trees. In Proceedings of the International Joint Conference on Artificail Intelligence. 15. Quinlan, J.R. Induction of decision trees, Mach. Learn. 1,1(1986) 81-106 16. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. Learning internal representations by error propagation. In Parallel Distributed Processing. MIT Press, Cambridge, Mass., 1986, pp.318-362 17. Russel, S. Analogical and inductive reasoning. Ph. D. thesis, Computer Science Dept., 1986 18. Sadeh N. Look-ahead techinques for micro-opportunistic job shop scheduling. Ph. D. thesis, Robotics Inst., Carnegie Mellon Univ., Pittsburgh, Pa., 1991 19. Salton, G. and Buckley, C. Improving retrieval performanceby relevance feedback, JASIS 41(1990), 288-297 20. Schlimmer, J.C., Redstone:A learning apprentice of text transformations for cataloging 21. Shet, B. and Maes, P. Evolving agents for personalized information filtering. In Proceedings of th 9th IEEE Conference on AI for Applicaitons. IEEE, New York, 1993
|