¢¸
  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (1 ÆäÀÌÁö)
    1

  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (2 ÆäÀÌÁö)
    2

  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (3 ÆäÀÌÁö)
    3


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    3 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : ´õ Å©°Ôº¸±â
  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (1 ÆäÀÌÁö)
    1

  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (2 ÆäÀÌÁö)
    2

  • [¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)   (3 ÆäÀÌÁö)
    3



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    3 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
µå·¡±× : Á¿ìÀ̵¿

[¹ÌÀûºÐ]´ÙÇ×½ÄÀÇ ÃßÁ¤°ª(polynomial appoximation to functions)

½ÃÇèÁ·º¸ > ÀÚ°Ý°í½Ã ÀÎ ¼â ¹Ù·Î°¡±âÀúÀå
Áñ°Üã±â
Å°º¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç
Ŭ¸³º¸µå¿¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
ÆÄÀÏ : 7_Polynomial_Approximations_to_Functions.hwp   [Size : 70 Kbyte ]
ºÐ·®   3 Page
°¡°Ý  500 ¿ø

Ä«Ä«¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â


ÀÚ·á¼³¸í
´ÙÇ×½ÄÀÇ ÃßÁ¤°ªÀ» ±¸ÇÏ´Â °ÍÀ¸·Î
´ëºÎºÐ Å×ÀÏ·¯ ½Ã¸®Áî¿¡ ´ëÇÑ ³»¿ëÀ¸·Î
¿µ¹®ÀÚ·áÀÓ.
½ÃÇè Àü¿¡ Á¤¸®Çؼ­ º¸±â ÁÁÀº ÀÚ·á.
¸ñÂ÷/Â÷·Ê
Theorem 7.1. Let f be a function with derivatives of order n at the point x=0. Then there exists one and only one polynomial P of degree ¡Â n which satisfies the n+1 conditions p(0) = f(0), P`(0) = f`(0), ....., P(n)(0) = f(n)(0). This polynomial is given by the formula P(x) = Tn f(x).
Point. point x = a, P(x) = Tn f(x;a).
Point. T2n+1(sinx) = x - x3/3! + x5/5! - x7/7! + ... + (-1)n x2n+1/(2n+1)!
Point. T2n(cosx) = 1 - x2/2! + x4/4! - x6/6! + .... + (-1)n x2n/(2n)!
Theorem. 7.2. The Taylor operator Tn has the following properties:

(a) Linearity property. If c1 and c2 are constants, then Tn(c1f + c2g) = c1Tn(f) + c2Tn(g)

(b) Differentiation property. The derivative of a Taylor polynomial of f is a Taylor polynomial of f`; in fact, we have (Tnf)` = Tn-1(f`).

º»¹®/³»¿ë
7. Polynomial Approximations to Functions.

Theorem 7.1. Let f be a function with derivatives of order n at the point x=0. Then there exists one and only one polynomial P of degree ¡Â n which satisfies the n+1 conditions p(0) = f(0), P`(0) = f`(0), ....., P(n)(0) = f(n)(0). This polynomial is given by the formula P(x) = Tn f(x).

Point. point x = a, P(x) = Tn f(x;a).

Point. T2n+1(sinx) = x - x3/3! + x5/5! - x7/7! + ... + (-1)n x2n+1/(2n+1)!

Point. T2n(cosx) = 1 - x2/2! + x4/4! - x6/6! + .... + (-1)n x2n/(2n)!

Theorem. 7.2. The Taylor operator Tn has the following properties:
(a) Linearity property. If c1 and c2 are constants, then Tn(c1f + c2g) = c1Tn(f) + c2Tn(g)
(b) Differentiation property. The derivative of a Taylor polynomial of f is a Taylor polynomial of f`; in fact, we have (Tnf)` = Tn-1(f`).
(c) Integration property. An indefinite integral of a Taylor polynomial of f is a Taylor polynomial of an indefinite integral of f. More precisely, if g(x) = , t¡¦(»ý·«)
Âü°í¹®Çå
calculus


ÀÚ·áÁ¤º¸
ID : schw****
Regist : 2010-07-20
Update : 2017-03-22
FileNo : 10980679

Àå¹Ù±¸´Ï

¿¬°ü°Ë»ö(#)
Å×ÀÏ·¯   Àü°³   ±Þ¼ö   ½Ã¸®Áî   ´ÙÇ×½Ä   ÅÂÀÏ·¯   ¹ÌÀûºÐ   ÃßÁ¤°ª   polynomial   appoximation   to   functions   Polynomial   Approximations   Functions  


ȸ»ç¼Ò°³ | °³ÀÎÁ¤º¸Ãë±Þ¹æħ | °í°´¼¾ÅÍ ¤Ó olle@olleSoft.co.kr
¿Ã·¹¼ÒÇÁÆ® | »ç¾÷ÀÚ : 408-04-51642 ¤Ó ±¤ÁÖ±¤¿ª½Ã ±¤»ê±¸ ¹«Áø´ë·Î 326-6, 201È£ | äÈñÁØ | Åë½Å : ±¤»ê0561È£
Copyright¨Ï ¿Ã·¹¼ÒÇÁÆ® All rights reserved | Tel.070-8744-9518
°³ÀÎÁ¤º¸Ãë±Þ¹æħ ¤Ó °í°´¼¾ÅÍ ¤Ó olle@olleSoft.co.kr
¿Ã·¹¼ÒÇÁÆ® | »ç¾÷ÀÚ : 408-04-51642 | Tel.070-8744-9518